Use the information given in the first image to evaluate the limit.


Given:-
[tex]\lim _{x\rightarrow2}h(x)=5,\lim _{x\rightarrow2}g(x)=0[/tex]To find:-
[tex]\lim _{x\rightarrow2}\lbrack g(x)+h(x)\rbrack[/tex]Now we use the formula,
[tex]\lim _{x\rightarrow a}\lbrack g(x)+h(x)\rbrack=\lim _{x\rightarrow a}g(x)+\lim _{x\rightarrow a}h(x)[/tex]So we get,
[tex]\begin{gathered} \lim _{x\rightarrow a}\lbrack g(x)+h(x)\rbrack=\lim _{x\rightarrow a}g(x)+\lim _{x\rightarrow a}h(x) \\ \text{ =5+0} \\ \text{ =5} \end{gathered}[/tex]So the required solution is,
[tex]\lim _{x\rightarrow2}\lbrack g(x)+h(x)\rbrack=5[/tex]