Given:
In one instance:
P=$20000 ; APR=8.75% ;t=2 years ; n=12 months
[tex]\text{PMT}=\frac{P(\frac{APR}{n})}{\lbrack1-(1+\frac{R}{n})^{-nt}\rbrack}[/tex][tex]\text{PMT}=\frac{20000(\frac{0.0875}{12})}{\lbrack1-(1+\frac{0.0875}{12})^{-24}\rbrack}[/tex][tex]\text{PMT}=\frac{20000(0.0073)}{\lbrack1-0.84^{}\rbrack}[/tex][tex]\text{PMT}\approx\text{ \$912.5}[/tex]Interest paid :
[tex]=912.5\times24-20000[/tex][tex]=\text{ \$}1900[/tex]In Second Instance:
[tex]\text{Amount paid (A)=P(1+}\frac{r}{n})^{nt}[/tex][tex]A=20000(1+\frac{0.0875}{12})^{24}[/tex][tex]A=20000(1.1905)[/tex][tex]A\approx\text{ \$23810}[/tex][tex]\text{Interest paid =23810-20000}[/tex][tex]\text{Interest Paid= \$3810}[/tex]Difference in the amount of interest paid = 3810-1900
Difference in the amount of interest paid = $1910