Given data:
* The mass of the CD is m = 15.8 g.
* The diameter of the CD is D = 12 cm.
* The tangential velocity of the CD is v =1.2 m/s.
* The music is detected at the radius of r = 29 mm.
Solution:
The moment of inertia of CD is,
[tex]\begin{gathered} I=\frac{1}{2}mR^2^{} \\ I=\frac{1}{2}m(\frac{D}{2})^2 \end{gathered}[/tex]Substituting the known values,
[tex]\begin{gathered} I=\frac{1}{2}\times15.8\times10^{-3}\times(\frac{12}{2}\times10^{-2})^2 \\ I=284.4\times10^{-3-4} \\ I=284.4\times10^{-7}kgm^2 \end{gathered}[/tex]The initial kinetic energy of the CD is,
[tex]K_1=\frac{1}{2}I\omega^2_1_{}[/tex]where,
[tex]\omega_1\text{ is the initial angular velocity of the CD}[/tex]As the CD is initially at rest, thus, the initial kinetic energy of the CD is,
[tex]K_1=0\text{ J}[/tex]The final kinetic energy of the CD is,
[tex]K_2=\frac{1}{2}I\omega^2_2[/tex]where,
[tex]\omega_2\text{ is the final angular velocity of CD}[/tex]The angular velocity of the CD in terms of the translational velocity and radius of CD at which the music is detected,
[tex]\begin{gathered} \omega_2=\frac{v}{r} \\ \omega_2=\frac{1.2}{29\times10^{-3}} \\ \omega_2=0.04138\times10^3 \\ \omega_2=41.38\text{ rad/s} \end{gathered}[/tex]Thus, the final kinetic energy is,
[tex]\begin{gathered} K_2=\frac{1}{2}\times284.4\times10^{-7}\times(41.38)^2 \\ K_2=243489.7\times10^{-7} \\ K_2=0.024\text{ J} \end{gathered}[/tex]The work done on the CD is the change in its kinetic energy, thus, the work done is,
[tex]\begin{gathered} W=K_2-K_1 \\ W=0.024-0 \\ W=0.024\text{ J} \end{gathered}[/tex]