Let X be the random variable representing the number of times that Henry goes to the movies.
Then, the given probability values can be understood as,
[tex]\begin{gathered} P(X=2)=0.05 \\ P(X=1)=0.30 \\ P(X=0)=0.65 \end{gathered}[/tex]The expected value of X can be obtained by using the formula,
[tex]E(X)=\sum ^{}_{}x\cdot P(X=x)[/tex]Substitute the values and simplify,
[tex]\begin{gathered} E(X)=2\cdot(0.05)+1\cdot(0.30)+0\cdot(0.65) \\ E(X)=0.10+0.30+0 \\ E(X)=0.40 \end{gathered}[/tex]Thus, the required expected value for the number of times that Henry goes to the movies in a month, is 0.40.