Respuesta :

Given:

To find:

Magnification of an optical system with uncertainties.

Explanation:

The formula for the magnification of an optical system is given as:

[tex]M=\frac{x^{\prime}}{x}..........(1)[/tex]

The uncertain value of x' is:

[tex]x^{\prime}=x^{\prime}\pm\sigma_{x^{\prime}}[/tex]

Substituting the values in the above equation, we get:

[tex]x^{\prime}=12.8\pm0.05[/tex]

The uncertainty in the measurement of x' can be expressed in percentages as:

[tex]\begin{gathered} x^{\prime}=12.8\pm\frac{0.05}{12.8}\times100\% \\ \\ x^{\prime}=12.8\pm0.39\%..........(2) \end{gathered}[/tex]

The uncertain value of x is:

[tex]x=x\pm\sigma_x[/tex]

Substituting the values in the above equation, we get:

[tex]x=9.7\pm0.05[/tex]

The uncertainty in the measurement of x can be expressed in percentages as:

[tex]\begin{gathered} x=9.7\pm\frac{0.05}{9.7}\times100\% \\ \\ x=9.7\pm0.52\%..........(3) \end{gathered}[/tex]

Substituting values from equations (2) and (3) in equation (1), we get:

[tex]\begin{gathered} M=\frac{12.8\pm0.39\%}{9.7\pm0.52\%} \\ \\ M=\frac{12.8}{9.7}\pm(0.39+0.52)\% \\ \\ M=1.32\pm0.91\% \\ \\ M=1.32\pm\frac{0.91}{100}\times1.32 \\ \\ M=1.32\pm0.012 \end{gathered}[/tex]

Thus, from the above equation, we get:

[tex]M\pm\sigma_M=1.32\pm0.012[/tex]

The formula for the expected value of the magnification is given as:

[tex]M=\frac{i}{o}..........(4)[/tex]

Here, i is the image position and o is the object position.

In the given data,

The image position is: t = 403

The object position is: a = 210

The image position with uncertain value is given as:

[tex]i=t\pm\sigma_t[/tex]

Substituting the values in the above equation, we get:

[tex]i=403\pm0.05[/tex]

The uncertainty in the measurement of image position can be expressed in percentages as:

[tex]\begin{gathered} i=403\pm\frac{0.05}{403}\times100\% \\ \\ i=403\pm0.0124\%..........(5) \end{gathered}[/tex]

The object position with uncertain value is given as:

[tex]o=a\pm\sigma_a[/tex]

Substituting the values in the above equation, we get:

[tex]o=210\pm0.05[/tex]

The uncertainty in the measurement of the object position can be expressed in percentages as:

[tex]\begin{gathered} o=210\pm\frac{0.05}{210}\times100 \\ \\ o=210\pm0.0238\%..........(6) \end{gathered}[/tex]

Substituting values from equations (5) and (6) in equation (4), we get:

[tex]\begin{gathered} M=\frac{403\pm0.0124\%}{210\pm0.0238\%} \\ \\ M=\frac{403}{210}\pm(0.0124+0.0238)\% \\ \\ M=1.92\pm0.0362\% \\ \\ M=1.92\pm\frac{0.0362}{100}\times1.92 \\ \\ M=1.92\pm0.0007 \end{gathered}[/tex]

From the above equation, we get:

[tex]M\pm\sigma_M=1.92\pm0.0007[/tex]

Final answer:

The magnification of the optical system is:

[tex]M\pm\sigma_M=1.32\pm0.012[/tex]

The expected value of the magnification is:

[tex]M\pm\sigma_M=1.92\pm0.0007[/tex]

When both the values are compared, we see that these values do not agree within their uncertainties.

Ver imagen AvigdorZ101217
RELAXING NOICE
Relax