Respuesta :

Given the pattern

[tex]18-9+4.5-2.25+\cdots[/tex]

To find the pattern,

If n is the first term, the pattern it followed is as follows

[tex]n+(-\frac{1}{2})n+(-\frac{1}{2})(-\frac{1}{2})n+(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})n+\cdots[/tex]

[tex]n-\frac{n}{2}+\frac{n}{4}-\frac{n}{8}+\frac{n}{16}-\frac{n}{32}+\cdots[/tex]

The first term of the given pattern is 18, i.e n = 18,

Substitute n into the pattern above,

[tex]\begin{gathered} 18-\frac{18}{2}+\frac{18}{4}-\frac{18}{8}+\frac{18}{16}-\frac{18}{32}+\cdots \\ =18-9+4.5-2.25+1.125-0.5625+\cdots \end{gathered}[/tex]

Hence, the pattern is

[tex]n-\frac{n}{2}+\frac{n}{4}-\frac{n}{8}+\frac{n}{16}-\frac{n}{32}+\cdots[/tex]

RELAXING NOICE
Relax