Given the pattern
[tex]18-9+4.5-2.25+\cdots[/tex]To find the pattern,
If n is the first term, the pattern it followed is as follows
[tex]n+(-\frac{1}{2})n+(-\frac{1}{2})(-\frac{1}{2})n+(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})n+\cdots[/tex][tex]n-\frac{n}{2}+\frac{n}{4}-\frac{n}{8}+\frac{n}{16}-\frac{n}{32}+\cdots[/tex]The first term of the given pattern is 18, i.e n = 18,
Substitute n into the pattern above,
[tex]\begin{gathered} 18-\frac{18}{2}+\frac{18}{4}-\frac{18}{8}+\frac{18}{16}-\frac{18}{32}+\cdots \\ =18-9+4.5-2.25+1.125-0.5625+\cdots \end{gathered}[/tex]Hence, the pattern is
[tex]n-\frac{n}{2}+\frac{n}{4}-\frac{n}{8}+\frac{n}{16}-\frac{n}{32}+\cdots[/tex]