Respuesta :

Answer:

Given that,

[tex]2+(-8)+32+(-128)+.\ldots_{}[/tex]

To find the sum of the first 5 terms.

First, to find the first 5 terms of the given sequence.

The given sequence is 2,-8,32,-128,...

It follows geometric series with initial term 2, and common ratio as -4

The explicit formula of the given sequence is,

[tex]t_n=2(-4)^{n-1}_{}_{}[/tex]

To find the 5th term of the sequence,

Put n=5 in the above equation we get,

[tex]t_5=2(-4)^{5-1}[/tex][tex]t_5=2(-4)^4[/tex][tex]t_5=2(256)[/tex][tex]t_5=512[/tex]

Since common ratio is less than 1, we get the sum of the series formula as,

[tex]S_n=\frac{a(1-r^n)}{1-r}[/tex]

Substituting the values we get,

[tex]S_5=\frac{2(1-(-4)^5)}{1+4}[/tex][tex]=\frac{2(1+1024)}{5}[/tex][tex]=\frac{2(1025)}{5}[/tex][tex]=2(205)[/tex][tex]=410[/tex]

The sum of the first 5 terms of the given series is 410.

Answer is: option B: 410

RELAXING NOICE
Relax