Match the polynomial expression on the left with the simplified version on the right. Second expression

The expression given is,
[tex]\:\frac{12x^4-5x^3+x^2+10x-8}{3x^2+x-2}[/tex]Simplify
[tex]\begin{gathered} \frac{\left(x+1\right)\left(3x-2\right)\left(4x^2-3x+4\right)}{3x^2+x-2} \\ \frac{\left(x+1\right)\left(3x-2\right)\left(4x^2-3x+4\right)}{\left(3x-2\right)\left(x+1\right)} \\ \mathrm{Cancel\:the\:common\:factor:}\:x+1 \\ \frac{\left(3x-2\right)\left(4x^2-3x+4\right)}{3x-2} \\ \mathrm{Cancel\:the\:common\:factor:}\:3x-2 \\ =4x^2-3x+4 \end{gathered}[/tex]Hence, the answer is
[tex]4x^2-3x+4[/tex]