Given that:
Mean = 118.4
Standard devation = 19.3
The z-score is
[tex]Z=\frac{X-\mu}{\sigma}[/tex]a. Find the probabaility between 76.4 and 97.8.
[tex]\begin{gathered} P(76.4\leq X\leq97.8)=P(\frac{76.4-118.4}{19.3}\leq Z\leq\frac{97.8-118.4}{19.3}) \\ =P(-2.176\leq Z\leq-1.067) \\ =P(1.067\leq Z\leq2.176) \\ =P(0\leq Z\leq2.18)-P(0\leq Z\leq1.07) \end{gathered}[/tex]From the standard normal table,
[tex]\begin{gathered} P(76.4\leq X\leq97.8)=\text{0}.4854-0.3577 \\ =0.1277 \end{gathered}[/tex]b. Find probability between 88.5 and 150.4.
[tex]\begin{gathered} P(88.5\leq X\leq150.4)=P(\frac{88.5-118.4}{19.3}\leq Z\leq\frac{150.4-118.4}{19.3}) \\ =P(-1.55\leq Z\leq1.66) \\ =P(0\leq Z\leq1.55)+P(0\leq Z\leq1.66) \end{gathered}[/tex]From the standard normal table,
[tex]\begin{gathered} P(88.5\leq X\leq150.4)=\text{0}.4394+0.4515 \\ =0.8855 \end{gathered}[/tex]