Respuesta :

To solve this problem we need to calculate the volumes of each of the pyramids individually.

The formula for the volume V of a pyramid is

[tex]V=\frac{A_B\cdot h}{3}[/tex]

Where

A_B: base area

h: height

For the first pyramid

[tex]\begin{gathered} V_1=\frac{1}{3}\cdot5500\cdot120 \\ V_1=220000\text{ sq meters} \\ \end{gathered}[/tex]

For the second pyramid

[tex]\begin{gathered} V_2=\frac{1}{3}\cdot350\cdot50 \\ V_2=5833.33\text{ sq meters} \end{gathered}[/tex]

The difference in volumes

[tex]\begin{gathered} V=V_1-V_2 \\ V=220000-5833.33 \\ V=214166.66\text{ sq meters} \end{gathered}[/tex]

The difference between the volumes of the pyramids is 214167 square meters.

ACCESS MORE
EDU ACCESS
Universidad de Mexico