,We have
[tex]2\sin (2x)+\sqrt[]{2}=0[/tex]In order to simplify the equation we will substitute the value inside the sine as a new variable
[tex]2x=\theta[/tex]then we have
[tex]2\sin (\theta)+\sqrt[]{2}=0[/tex]then we isolate the variable theta, searching in the unit circle or in a sine graph. In this case we will use the unit circle
As we can see the value of the sin can be taken in the y-axis
[tex]\theta=\sin ^{-1}(-\frac{\sqrt[]{2}}{2})[/tex]we have two values for the interval (0,2pi), that are
[tex]\begin{gathered} \theta=\frac{5\pi}{4} \\ \theta=\frac{7\pi}{4} \end{gathered}[/tex]then we come back to the original variable
for the first solution
[tex]\begin{gathered} 2x=\frac{5\pi}{4} \\ x=\frac{5\pi}{8} \end{gathered}[/tex]for the second solution
[tex]\begin{gathered} 2x=\frac{7\pi}{4} \\ x=\frac{7\pi}{8} \end{gathered}[/tex]then we will calculate the period of the function
[tex]\begin{gathered} 2=\frac{2\pi}{T} \\ T=\frac{2\pi}{2}=\pi \end{gathered}[/tex]then the possible solution can be calculated with the next general formula
[tex]\frac{5\pi}{8}+\pi n[/tex][tex]\frac{7\pi}{8}+\pi n[/tex]therefore using n=0 and n=1 we have
[tex]\frac{5\pi}{8},\frac{7\pi}{8},\frac{13\pi}{8},\frac{15\pi}{8}[/tex]therefore the correct choice is the last option