Assume the tabLe is exponential There was a release of European wild rabbits in Victoria, Australia in December 1858. without natural predators, the population grew. Round to the nearest whole number

The population of rabbits (P) can be expressed with an exponential model of the form:
[tex]P=a\times e^{b\times t}[/tex]Then, we need to find the values of a and b in order to calculate the population at the time t.
Let's take the population at time t1 to be P1 and the population at time t2 to be P2. then:
[tex]\begin{gathered} P1=a\times e^{b\times t1} \\ P2=a\times e^{b\times t2} \end{gathered}[/tex]By taking the ratio of P1 to P2, we get:
[tex]\begin{gathered} \frac{P1}{P2}=\frac{a\times e^{b\times t1}}{a\times e^{bt1}} \\ \frac{P1}{P2}=\frac{a}{a}\times\frac{e^{b\times t1}}{e^{bt\times1}} \\ \frac{P1}{P2}=\frac{a}{a}\times e^{b\times t1-b\times t2} \\ \frac{P1}{P2}=e^{b\times(t1-t2)} \end{gathered}[/tex]We can solve for b by taking the natural logarithm on both sides of this expression:
[tex]\begin{gathered} \frac{P1}{P2}=e^{b\times(t1-t2)} \\ \ln (\frac{P1}{P2})=\ln (e^{b\times(t1-t2)}) \\ \ln (\frac{P1}{P2})=b\times(t1-t2)\ln (e^{}) \\ b=\frac{\ln(\frac{P1}{P2})}{(t1-t2)} \end{gathered}[/tex]By taking the first and the second row of the table, we can calculate b like this:
[tex]b=\frac{\ln (\frac{250}{375})}{(12-13)}\approx0.4[/tex]Now that we know the value of b, we only need to calculate a, we can do it like this:
[tex]\begin{gathered} P=a\times e^{b\times t} \\ a=\frac{P}{e^{b\times t}} \end{gathered}[/tex]Taking the data of the third row, we get:
[tex]a=\frac{563}{e^{0.4\times14}}\approx1.92[/tex]Then, for the time 15 and 16, we get:
[tex]\begin{gathered} P=1.92\times e^{0.4\times15}\approx844.5 \\ P=1.92\times e^{0.4\times16}\approx1266.75 \end{gathered}[/tex]