Determine the open intervals on which the function is increasing, decreasing, or constant. (Enter your answers using interval notation.

Answer:
• Increasing: (4, ∞)
,• Decreasing: (-∞. 4)
,• Constant: DNE
Explanation:
Given the function:
[tex]f(x)=x^2-8x[/tex]First, find the derivative:
[tex]f^{\prime}(x)=2x-8[/tex]When f'(x)<0:
[tex]\begin{gathered} 2x-8<0 \\ 2x<8 \\ x<\frac{8}{2} \\ x<4 \\ \implies(-\infty,4) \end{gathered}[/tex]The interval of decrease is at (-∞, 4).
When f'(x)>0:
[tex]\begin{gathered} 2x-8>0 \\ 2x>8 \\ x>\frac{8}{2} \\ x>4 \\ \implies(4,\infty) \end{gathered}[/tex]The interval of increase is at (4, ∞).
There is no interval at which the function is constant, so we write DNE.