Use the properties of logarithms to expand logxz6.Each logarithm should involve only one variable and should not have any exponents. Assume that all variables are positive.

Use the properties of logarithms to expand logxz6Each logarithm should involve only one variable and should not have any exponents Assume that all variables are class=

Respuesta :

Solution:

Given;

[tex]\begin{gathered} \log_(\frac{x}{z^6}) \\ \end{gathered}[/tex]

Recall the properties of logarithms;

[tex]\log_(\frac{a}{b})=\log_(a)-\log_(b)[/tex]

Thus;

[tex]\log_\text{ }(\frac{x}{z^6})=\log_\text{ }(x)-\log_{\text{ }}(z^6)[/tex]

Recall the power property of logarithm;

[tex]\log_{\text{ }}(a^b)=b\log_{\text{ }}(a)[/tex]

Then;

[tex]\log_{\text{ }}(x)-\log_{\text{ }}(z^6)=\log_{\text{ }}(x)-6\log_{\text{ }}(z)[/tex]

ANSWER:

[tex]\begin{equation*} \log_{\text{ }}(x)-6\log_{\text{ }}(z) \end{equation*}[/tex]

RELAXING NOICE
Relax