Use the properties of logarithms to expand logxz6.Each logarithm should involve only one variable and should not have any exponents. Assume that all variables are positive.

Solution:
Given;
[tex]\begin{gathered} \log_(\frac{x}{z^6}) \\ \end{gathered}[/tex]Recall the properties of logarithms;
[tex]\log_(\frac{a}{b})=\log_(a)-\log_(b)[/tex]Thus;
[tex]\log_\text{ }(\frac{x}{z^6})=\log_\text{ }(x)-\log_{\text{ }}(z^6)[/tex]Recall the power property of logarithm;
[tex]\log_{\text{ }}(a^b)=b\log_{\text{ }}(a)[/tex]Then;
[tex]\log_{\text{ }}(x)-\log_{\text{ }}(z^6)=\log_{\text{ }}(x)-6\log_{\text{ }}(z)[/tex]ANSWER:
[tex]\begin{equation*} \log_{\text{ }}(x)-6\log_{\text{ }}(z) \end{equation*}[/tex]