Given:
The rate of grain pouring from chute is given as
[tex]\frac{dV}{dt}=12\text{ }\frac{ft^3}{\min }[/tex]The relation between height and radius is given
[tex]h=4r[/tex]It is also given that height is h=3 ft.
Explanation:
The volume of cone is
[tex]V=\frac{1}{3}\pi(r^2)h[/tex]Substitute the value of h=4r.
[tex]V=\frac{1}{3}\pi(\frac{h}{4})^2h=\frac{\pi}{48}h^3[/tex]Now take the derivative of the volume with respect to t,
[tex]\frac{dV}{d\text{ t}}=\frac{\pi}{48}\times3h^2\times\frac{dh}{\text{ dt}}[/tex]Substitute the value of h and dh/dt,
[tex]12=\frac{\pi}{48}\times3\times9\times\frac{dh}{dt}[/tex][tex]\frac{12\times48}{\pi\times3\times9}=\frac{dh}{d\text{ t}}[/tex][tex]\frac{dh}{dt}=\frac{4\times16}{\pi\times3}=\frac{64}{3\pi}\frac{ft}{\min }[/tex]Answer:
Hence the height increasing at the rate of
[tex]\frac{64}{3\pi}\frac{ft}{\min }[/tex]