we know that
[tex]\begin{gathered} \frac{dy}{dx}=2x^5+5x^4 \\ \end{gathered}[/tex]Find out the value of the function y
[tex]y=\int\frac{dy}{dx}dx=\int(2x^5+5x^4)dx=\frac{x^6}{3}+x^5+C[/tex]so
[tex]y=\frac{x^6}{3}+x^5+C[/tex]Remember that
y(1)=2
that means
For x=1, the value of y=2
substitute
[tex]\begin{gathered} 2=\frac{(1)^6}{3}+(1)^5+C \\ 2=\frac{1}{3}+1+C \\ C=\frac{2}{3} \\ \\ therefore \\ The\text{ solution is} \\ y=\frac{x^{6}}{3}+x^5+\frac{2}{3} \end{gathered}[/tex]