If AACBZECD=AADCE, ZCAB = 63⁰,52°, and ZDEC = 5xDEx = [?]CB

given:
[tex]\angle CAB=63^0,\text{ }\angle ECD=52^0\text{ , }\angle DEC=5x[/tex]Find: x
Explanation:
[tex]\begin{gathered} \angle ECD=\angle BCA=52^0 \\ \angle CAB+\angle ABC+\angle BCA=180^0 \\ 63^0+\angle ABC+52^0=180^0 \\ \angle ABC=65^0 \end{gathered}[/tex][tex]\begin{gathered} \angle ABC=\angle CDE \\ \angle CDE+\angle DEC+\angle ECD=180^0 \\ 65^0+5x+52^0=180^0 \\ 5x=63^0 \\ x=12.6^0 \end{gathered}[/tex]