Use Direct Comparison Test to determine whether the series is convergent or divergent:

A series that has a finite sum is called convergent series. Otherwise, are divergent.
• Direct Comparison Test
Supposing that aₙ ≥ 0 and bₙ ≥ 0 for all values of n.
• Converges:, If aₙ ≤ bₙ for all values of n and
[tex]\Sigma_{n=0}^{\infty}b_n[/tex]converges, then the series:
[tex]\Sigma^{\infty}_{n=0}a_n[/tex]also converges.
• Diverges: ,If aₙ ≥ bₙ for all values of n and
[tex]\Sigma^{\infty}_{n=0}b_n[/tex]diverges, then the series:
[tex]\Sigma^{\infty}_{n=0}a_{n}[/tex]also diverges.
Our series:
[tex]\Sigma_{n=0}^{\infty}\frac{6+\sin(n)}{n^2}[/tex]Applying the comparison we can see that the series converges.
Answer: converge.