Given:
[tex]P=\text{ \$10,000 ; }r=0.052[/tex]a)
A= $100,000
[tex]A=P(1+\frac{r}{12})^{12t}[/tex][tex]\begin{gathered} 100000=10000(1+\frac{0.052}{12})^{12t} \\ \frac{100000}{10000}=(\frac{12.052}{12})^{12t} \\ 10=(1.0043)^{12t} \\ 10=(1.0533)^t \\ t=44.38 \end{gathered}[/tex]It takes 44.38 years to have $100,000 in the account.
b)
A=$100,000 ; t=25
[tex]\begin{gathered} 100000=10000(1+\frac{r}{12})^{12(25)} \\ 10=(\frac{12+r}{12})^{300} \\ r=0.0925 \end{gathered}[/tex]Interest rate is 9.25% per year.