Hello there. To solve this question, we have to remember some properties about logarithmic equations.
Given the following equation:
[tex]\log_6(x)+\log_6(x-1)=1[/tex]We want to solve it for x.
First, apply the property:
[tex]\log_a(b)+\log_a(c)=\log_a(b\cdot c)[/tex]Hence we'll get
[tex]\log_6(x\cdot(x-1))=1[/tex]Now, apply the following property:
[tex]\log_a(b)=c\Rightarrow b=a^c[/tex]Therefore we get
[tex]x\cdot(x-1)=6^1=6[/tex]Apply the FOIL:
[tex]x^2-x=6[/tex]Subtract 6 on both sides of the equation
[tex]x^2-x-6=0[/tex]To solve the quadratic equation, use the formula:
For ax² + bx + c = 0 and a not equal to zero,
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Hence we'll have a = 1, b = -1 and c = 6, so
[tex]x=\dfrac{-(-1)\pm\sqrt{(-1)^2-4\cdot1\cdot(-6)}}{2\cdot1}=\dfrac{1\pm\sqrt{1+24}}{2}[/tex]Adding the values in the radical, we get
[tex]x=\dfrac{1\pm\sqrt{25}}{2}[/tex]Knowing 25 = 5², we have
[tex]x=\dfrac{1\pm5}{2}[/tex]Separating the solutions, we get
[tex]\begin{gathered} x_1=\dfrac{1+5}{2}=\dfrac{6}{2}=3 \\ \\ x_2=\dfrac{1-5}{2}=\dfrac{-4}{2}=-2 \end{gathered}[/tex]But the argument of a logarithm has to be greater than zero, so
[tex]x=3[/tex]Is the only solution to this logarithmic equation.