Respuesta :

Hello there. To solve this question, we have to remember some properties about logarithmic equations.

Given the following equation:

[tex]\log_6(x)+\log_6(x-1)=1[/tex]

We want to solve it for x.

First, apply the property:

[tex]\log_a(b)+\log_a(c)=\log_a(b\cdot c)[/tex]

Hence we'll get

[tex]\log_6(x\cdot(x-1))=1[/tex]

Now, apply the following property:

[tex]\log_a(b)=c\Rightarrow b=a^c[/tex]

Therefore we get

[tex]x\cdot(x-1)=6^1=6[/tex]

Apply the FOIL:

[tex]x^2-x=6[/tex]

Subtract 6 on both sides of the equation

[tex]x^2-x-6=0[/tex]

To solve the quadratic equation, use the formula:

For ax² + bx + c = 0 and a not equal to zero,

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Hence we'll have a = 1, b = -1 and c = 6, so

[tex]x=\dfrac{-(-1)\pm\sqrt{(-1)^2-4\cdot1\cdot(-6)}}{2\cdot1}=\dfrac{1\pm\sqrt{1+24}}{2}[/tex]

Adding the values in the radical, we get

[tex]x=\dfrac{1\pm\sqrt{25}}{2}[/tex]

Knowing 25 = 5², we have

[tex]x=\dfrac{1\pm5}{2}[/tex]

Separating the solutions, we get

[tex]\begin{gathered} x_1=\dfrac{1+5}{2}=\dfrac{6}{2}=3 \\ \\ x_2=\dfrac{1-5}{2}=\dfrac{-4}{2}=-2 \end{gathered}[/tex]

But the argument of a logarithm has to be greater than zero, so

[tex]x=3[/tex]

Is the only solution to this logarithmic equation.

ACCESS MORE
EDU ACCESS