Respuesta :

We have the following equation,

[tex](\frac{1}{3})^x=18[/tex]

By taking logarithm base 3 to both sides, we have

[tex]\log _3(\frac{1}{3})^x=\log _318[/tex]

By the powers rule for logarithms, we get

[tex]x\cdot\log _3(\frac{1}{3})^{}=\log _318[/tex]

Now, by the quotient rule, we have that

[tex]\begin{gathered} \log _3(\frac{1}{3})=\log _3(1)-\log _3(3) \\ \log _3(\frac{1}{3})=-\log _3(3) \end{gathered}[/tex]

because base 3 logarithm of 1 is zero. Then, we have

[tex]-x\cdot\log _3(3)^{}=\log _318[/tex]

But

[tex]\log _3(3)=1[/tex]

then, we obtain

[tex]-x=\log _318[/tex]

By multiplying both sides by -1, we have

[tex]x=-\log _318[/tex]

Finally, since

[tex]\log _318=2.6309[/tex]

The answer is x= - 2.6309

ACCESS MORE
EDU ACCESS
Universidad de Mexico