Step 1
If both circles are tangent to the function y²=4x at(1,2) then they must have the same slope at (1,2) that y²=4x has at (1,2). So we will find the slope of the tangent line to y²=4x at (1,2).
[tex]\begin{gathered} y^2=4x \\ \text{differentiating explictly we have;} \\ \frac{d(y^2)}{dx}=\frac{d(4x)}{dx} \\ 2y(\frac{dy}{dx})=4 \\ \frac{dy}{dx}=\frac{4}{2y} \\ \frac{dy}{dx}=\frac{2}{y} \end{gathered}[/tex][tex]\begin{gathered} \text{At }(1,2)\text{ } \\ \frac{dy}{dx}=\frac{2}{2}=1 \end{gathered}[/tex]Step 2
Let us assume the upper circle has a center at (x₁,y₁) r