Calculate final velocities assuming elastic collisions.m1=20 kg V01= 4 m/s m2=10 kg Vo2= 0 m/sVf1m/s (Round to 2 significant figures)V=2=m/s (Round to 2 significant figures)

Since the collision is elastic, the total kinetic energy of the system will remain the same after the collision.
For the conservation of momentum, we have the following equation:
[tex]\begin{gathered} m_1v_{o1}+m_2v_{o2}=m_1v_{f1}+m_2v_{f2} \\ 20\cdot4+10\cdot0=20\cdot v_{f1}+10\cdot v_{f2} \\ 20v_{f1}+10v_{f2}=80 \\ 2v_{f1}+v_{f2}=8 \end{gathered}[/tex]Now, from the kinetic energy conservation, we have:
[tex]\begin{gathered} \frac{m_1v^2_{o1}}{2}+\frac{m^{}_2v^2_{o2}}{2}=\frac{m_1v^2_{f1}}{2}+\frac{m_2v^2_{f2}}{2} \\ m_1v^2_{o1}+m_2v^2_{o2}=m_1v^2_{f1}+m_2v^2_{f2} \\ 20\cdot4^2+10\cdot0=20\cdot v^2_{f1}+10\cdot v^2_{f2} \\ 20v^2_{f1}+10v^2_{f2}=320 \\ 2v^2_{f1}+v^2_{f2}=32 \end{gathered}[/tex]From the first equation, we have vf2 = 8 - 2vf1. Using this value on the second equation, we have:
[tex]\begin{gathered} 2v^2_{f1}+(8-2v^{}_{f1})^2=32 \\ 2v^2_{f1}+64-32v^{}_{f1}+4v^2_{f1}=32 \\ 6v^2_{f1}-32v^{}_{f1}+32=0 \end{gathered}[/tex]Solving this quadratic equation, we have vf1 = 1.33 or vf1 = 4.
vf1 = 4 represents the initial situation, before the collision, so we have vf1 = 1.33 m/s.
Calculating vf2, we have:
[tex]\begin{gathered} v_{f2}=8-2\cdot1.33 \\ v_{f2}=8-2.66 \\ v_{f2}=5.33 \end{gathered}[/tex]Rounding to two significant figures, we have vf1 = 1.3 m/s and vf2 = 5.3 m/s.