a.
b. Let's find the diameter using the distance formula:
[tex]d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}[/tex]Where:
(x1,y1) = (2,2)
(x2,y2) = (-4,-2)
[tex]\begin{gathered} d=\sqrt[]{(-4-2)^2+(-2-2)^2} \\ d=\sqrt[]{(-6)^2+(-4)^2} \\ d=\sqrt[]{52} \\ d=2\sqrt[]{13}\approx7.2111 \end{gathered}[/tex]The radius of the circle is the diameter of the circle divided by 2:
[tex]r=\frac{d}{2}=\sqrt[]{13}\approx3.6[/tex]c. The area is given by:
[tex]A=\pi\cdot r^2=\pi\cdot(\sqrt[]{13})^2=\pi\cdot13\approx40.8[/tex]And the circumference is given by:
[tex]C=2\cdot\pi\cdot r=2\cdot\pi\cdot\sqrt[]{13}\approx22.6[/tex]