Answer with Explanation: The bag has 13red tokens and 19 green tokens:
The red probability:
[tex]\begin{gathered} P_r=\frac{13_r}{(13_r+19_g)}=\frac{13}{32}= \\ \\ P_r=\frac{13}{32}=40.625\% \end{gathered}[/tex]The Green probability:
[tex]\begin{gathered} P_g=\frac{G}{T}=\frac{19_g}{(13_r+19_g)}=\frac{19}{32} \\ \\ P_g=\frac{19}{32}=59.375\% \end{gathered}[/tex]If two tokes are pulled out, the first is green then the probability of the second to be green is:
[tex]\begin{gathered} P_g=\frac{G}{T}=\frac{(19_g-1)}{(13_r+19_g)-1}=\frac{18}{31} \\ \\ P_g=\frac{18}{31}=58.065\% \end{gathered}[/tex]