Answer:
Let the number of professors be represented with the letter P
[tex]n(P)=7[/tex]Let the number of associate professors be represented by the letter A
[tex]n(A)=8[/tex]Let the number of assistant professors be represented by the letter S
[tex]n(S)=6[/tex]Let the number of instructors be represented by the letter I
[tex]n(I)=4[/tex]The total number of sample space will be calculated below as
[tex]\begin{gathered} n(T)=n(P)+n(A)+n(S)+n(I) \\ n(T)=7+8+6+4 \\ n(T)=25 \end{gathered}[/tex]To figure out the probability of choosing a professor or an instructor, we will use the formula below
[tex]Pr(PorI)=Pr(P)+Pr(I)[/tex][tex]Pr(P)=\frac{n(P)}{n(T)}=\frac{7}{25}[/tex][tex]Pr(I)=\frac{n(I)}{n(T)}=\frac{4}{25}[/tex]By substituting the values, we will have
[tex]\begin{gathered} Pr(PorI)=Pr(P)+Pr(I) \\ Pr(PorI)=\frac{7}{25}+\frac{4}{25} \\ Pr(PorI)=\frac{11}{25} \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow\frac{11}{25}[/tex]