Exponential growth formula
[tex]p=a\cdot b^n[/tex]where
• p: population in year n
,• a: initial population
,• b: growth factor (must be greater than 1)
,• n: time, in years
Taking the year 2000 as n = 0, then initial population is a = 12,600.
In year 2006, n = 6 and p = 13,542. Substituting these values and solving for b:
[tex]\begin{gathered} 13542=12600\cdot b^6 \\ \frac{13542}{12600}=b^6 \\ \log _{10}(\frac{13542}{12600})=6\cdot\log _{10}b \\ \frac{\log _{10}(\frac{13542}{12600})}{6}=\log _{10}b \\ 10^{0.0052}\approx b \\ 1.0121\approx b \end{gathered}[/tex]In year 2015, n = 15, therefore
[tex]\begin{gathered} p=12600\cdot1.0121^{15} \\ p\approx15091 \end{gathered}[/tex]The population of Laredo in 2015 should be approximately 15,091
Substituting p = 28,000 into the equation and solving for n:
[tex]\begin{gathered} 28000=12600\cdot1.0121^n \\ \frac{28000}{12600}=1.0121^n \\ \log _{10}(\frac{28000}{12600})=n\cdot\log _{10}1.0121 \\ \frac{\log _{10}(\frac{28000}{12600})}{\log _{10}1.0121}=n \\ 67\approx n \end{gathered}[/tex]The population will reach 28,000 in 2067 (=2000+67)