We have to calculate a 95% confidence interval for the mean.
The data is: [111, 115, 120, 103, 106].
We can calculate the sample mean as:
[tex]\begin{gathered} M=\dfrac{1}{n}\sum ^n_{i=1}\, x_i \\ M=\dfrac{1}{5}(111+115+120+103+106) \\ M=\dfrac{555}{5} \\ M=111 \end{gathered}[/tex]and the sample standard deviation as:
[tex]\begin{gathered} s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2} \\ s=\sqrt{\dfrac{1}{4}((111-111)^2+(115-111)^2+(120-111)^2+(103-111)^2+(106-111)^2)} \\ s=\sqrt{\dfrac{186}{4}} \\ s=\sqrt{46.5}\approx6.82 \end{gathered}[/tex]The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.
When σ is not known, s divided by the square root of N is used as an estimate of σM:
[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{6.82}{\sqrt{5}}=\dfrac{6.82}{2.236}=3.05[/tex]The degrees of freedom for this sample size are:
[tex]df=n-1=5-1=4[/tex]The t-value for a 95% confidence interval and 4 degrees of freedom is t=2.776.
The margin of error (MOE) can be calculated as:
[tex]MOE=t\cdot s_M=2.776\cdot3.05\approx8.5[/tex]Then, we can express the confidence interval as:
[tex]\begin{gathered} CI=M\pm\text{MOE} \\ CI=111\pm8.5 \end{gathered}[/tex]Answer:
The 95% confidence interval for the weights of all baby giraffes is 111 ± 8.5.