In general, the compound interest formula is
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]In our case, since it is compounded quarterly, n=3 (3 periods of 4 months in a year), and
[tex]n=4,r=7\%=0.07,A=10000,t=5[/tex]Thus, solving for P,
[tex]\begin{gathered} \Rightarrow10000=P(1+\frac{0.07}{4})^{4\cdot5} \\ \Rightarrow P=\frac{10000}{(1+\frac{0.07}{4})^{4\cdot5}}=\frac{10000}{(1+\frac{0.07}{4})^{20}} \\ \Rightarrow P\approx7068.25 \end{gathered}[/tex]Thus, the answer is approximately $7068.25
A completely different situation is when we fix
[tex]A=P+10000,r=0.07,n=4[/tex][tex]\begin{gathered} \Rightarrow P+10000=P(1+\frac{0.07}{4})^{4\cdot5} \\ \Rightarrow P-P(1+\frac{0.07}{4})^{4\cdot5}=-10000 \end{gathered}[/tex]