Respuesta :

Solution for the question 2 :

It is given that ,

[tex]\begin{gathered} P_0=\text{ }800 \\ r\text{= }2\text{ \%} \\ n\text{ = 9 years} \end{gathered}[/tex]

The population after n years is given by exponential function ,

[tex]\begin{gathered} P(n)=P_0(1+\frac{r}{100})^n \\ \\ \\ \end{gathered}[/tex]

Population after 9 years is calculated as,

[tex]\begin{gathered} P(9)=\text{ 800 }\times(1+0.02)^9 \\ P(9)=\text{ 800 }\times(1.02)^9 \\ P(9)=800\text{ }\times\text{ 1.1951} \\ P(9)=\text{ }956.08\text{ }\approx\text{ 956 } \end{gathered}[/tex]

Thus the population after 9 years is 956 .

ACCESS MORE
EDU ACCESS