Respuesta :

Given the integral:

[tex]\int\frac{1+4xe^x}{x}[/tex]

You can evaluate it as follows:

1. Separate it into two integrals with the same denominator:

[tex]=\int\frac{1}{x}dx+\int\frac{4xe^x}{x}dx[/tex]

2. Write the constants outside the integral:

[tex]=\int\frac{1}{x}dx+4\int\frac{xe^x}{x}dx[/tex]

3. Since:

[tex]\frac{x}{x}=1[/tex]

You can keep simplifying:

[tex]=\int\frac{1}{x}dx+4\int e^xdx[/tex]

4. Integrate by applying these Integration Rules:

[tex]\begin{gathered} \int e^xdx=e^x \\ \\ \int\frac{1}{x}dx=ln|x|+C \end{gathered}[/tex]

You get:

[tex]=ln|x|+4e^x+C[/tex]

Hence, the answer is:

[tex]=ln|x|+4e^x+C[/tex]

Or:

[tex]=ln(abs(x))+4e^x+C[/tex]

RELAXING NOICE
Relax