Given RS||TU, RS=4, RQ=x+3, QT= 2x + 10, Find RQ and QT

Given that
[tex]RS\parallel TU[/tex]Given data
[tex]\begin{gathered} RS=4 \\ RQ=x+3 \\ QT=2x+10 \\ UT=10 \end{gathered}[/tex]Using the method of similar ratios
[tex]\frac{RS}{RQ}=\frac{UT}{QT}[/tex]Therefore,
[tex]\frac{4}{x+3}=\frac{10}{2x+10}[/tex]Cross-multiply
[tex]\begin{gathered} 4(2x+10)=10(x+3) \\ 8x+40=10x+30 \end{gathered}[/tex]Collect like terms
[tex]\begin{gathered} 40-30=10x-8x \\ 10=2x \end{gathered}[/tex]Divide both sides by 2
[tex]\begin{gathered} \frac{10}{2}=\frac{2x}{2} \\ 5=x \\ \Rightarrow x=5 \end{gathered}[/tex]Let us now solve for RQ and QT
[tex]\begin{gathered} \text{RQ}=x+3=5+3=8 \\ QT=2x+10=2(5)+10=10+10=20 \end{gathered}[/tex]Hence,
[tex]\begin{gathered} RQ=8\text{units} \\ QT=20\text{units} \end{gathered}[/tex]