For questions 9-10, use the diagram below to find the value of x and y.(3y + 2)°(11x + 13)(5x -9)

The sum of angles on the straight is equal to 180.
Determine the equation for x and y by sum of angles on straight line.
[tex]\begin{gathered} (3y+2)+90+(5x-9)=180 \\ 3y+5x=90+7 \\ 3y+5x=97 \end{gathered}[/tex]Second equation.
[tex]\begin{gathered} 11x+13+5x-9=180 \\ 16x=180-4 \\ x=\frac{176}{16} \\ =11 \end{gathered}[/tex]Substitute 11 for x in the equation 3y + 5x = 97 to obtain the value of y.
[tex]\begin{gathered} 3y+5\cdot11=97 \\ 3y=97-55 \\ y=\frac{42}{3} \\ =14 \end{gathered}[/tex]Thus value of x is 11 and y is 14.