Part (a)
Given data:
Mass of the automobile;
[tex]m=1000\text{ kg}[/tex]Velocity of the automobile;
[tex]v=90\text{ km/h}[/tex]Converting the velocity from km/h to m/s:
[tex]\begin{gathered} v=90\text{ km/h}\times\frac{1000\text{ m}}{3600\text{ s}} \\ =25\text{ m/s} \end{gathered}[/tex]The kinetic energy of the automobile is given as,
[tex]K\mathrm{}E=\frac{1}{2}mv^2[/tex]Substituting all known values,
[tex]\begin{gathered} KE=\frac{1}{2}\times(1000\text{ kg})\times(25\text{ m/s})^2 \\ =312500\text{ J } \end{gathered}[/tex]Therefore, kinetic energy of the automobile is 312500 J.
Part (b)
When the automobile is stoped, its velocity becomes 0 i.e. v'=0. Therefore, kinetic energy of the automobile when it comes to stop is given as,
[tex]\begin{gathered} K\mathrm{}E^{\prime}=\frac{1}{2}mv^{\prime2} \\ =\frac{1}{2}\times(1000\text{ kg})\times(0\text{ m/s})^2 \\ =0\text{ J} \end{gathered}[/tex]According to work-energy theorem, the work is equal to change in kinetic energy. Therefore,
[tex]W=K\mathrm{}E^{\prime}-K\mathrm{}E\text{. }[/tex]Substituting all known values,
[tex]\begin{gathered} W=0\text{ J}-312500\text{ J} \\ =-312500\text{ J} \end{gathered}[/tex]Here, negative sign indicates that the work is done on the system.
Therefore, the work done to bring the automobile to stop is 312500 J.