Find sin theta, sec theta, and tan theta, where theta is the angle shown in the figure. Give exact values, not decimal approximations.

Based on the definition of sin, sec and tan of an angle, you have:
[tex]\begin{gathered} sin\theta=\frac{opposite}{hypotenuse} \\ sec\theta=\frac{1}{cos\theta}=\frac{hypotenuse}{adjacent} \\ tan\theta=\frac{opposite}{adjacent} \end{gathered}[/tex]the opposite side length can be calculated by using the Pythagorean theorem:
[tex]\begin{gathered} h^2=c_1^2+c_2^2 \\ c_1^2=h^2-c_2^2 \\ c_1=\sqrt[\placeholder{⬚}]{11^2-8^2} \\ c_1\approx7.55 \end{gathered}[/tex]then, by replacing the values of the lengths of hypotenuse, opposite and adjacent sides, you obtain;
[tex]\begin{gathered} sin\theta=\frac{7.55}{11}=0.68 \\ sec\theta=\frac{11}{8}=1.37 \\ tan\theta=\frac{7.55}{8}=1.37 \end{gathered}[/tex]