The table below represents the closing prices of stock ABC for the last five days. Using your calculator, what is the equation of linear regression that fits these data? A. y=-0.272x + 22.319 B. y=-0.311x + 19.213 C. y=-0.297x+ 20.671 D. y= 289x + 21.459

The table below represents the closing prices of stock ABC for the last five days Using your calculator what is the equation of linear regression that fits thes class=

Respuesta :

Given the table:

Day Value

1 20.71

2 19.69

3 19.61

4 19.64

5 19.26

Given that the table represents the closing prices of stock ABC, let's find the equation of the linear regression that fits the data.

Where:

n(number of data) = 5

Apply the slope intercept form of a linear equation:

y = mx + b

Where m is the slope and b is the y-intercept

Let's find the sum of the x-values (Days)

1 + 2 + 3 + 4 + 5 = 15

Also, sum up the y-values:

20.71 + 19.69 + 19.61 + 19.64 + 19.26 = 98.91

Sum of the products of the values of x and y.

We have:

[tex]\begin{gathered} \sum ^{}_{}xy=(1\ast20.71)+(2\ast19.69)+(3\ast19.61)+(4\ast19.64)+(5\ast19.26) \\ \\ \sum ^{}_{}xy=293.78 \end{gathered}[/tex]

Sum up the values of the square of x

[tex]\begin{gathered} \sum ^{}_{}x^2=1^2+2^2+3^2+4^2+5^2 \\ \\ \sum ^{}_{}x^2=55 \end{gathered}[/tex]

Sum up the values of the square of y:

[tex]\begin{gathered} \sum ^{}_{}y^2=20.71^2+19.69^2+19.61^2+19.64^2+19.26^2 \\ \\ \sum ^{}_{}y^2=1957.83 \end{gathered}[/tex]

Let's find the slope, m:

[tex]\begin{gathered} m=\frac{n(\sum^{}_{}xy)-\sum^{}_{}x\sum^{}_{}y}{n(\sum^{}_{}x^2)-(\sum^{}_{}x)^2} \\ \\ m=\frac{5(293.8)-(15)(98.91)}{5(55)-(15)^2} \\ \\ m=-0.297 \end{gathered}[/tex]

To find the y-intercept (b), apply the formula:

[tex]b=\frac{(\sum ^{}_{}y)(\sum ^{}_{}x^2)-\sum ^{}_{}x\sum ^{}_{}xy}{n(\sum ^{}_{}x^2)-(\sum ^{}_{}x)^2}[/tex]

Thus, we have:

[tex]\begin{gathered} b=\frac{(98.91)(55)-15\ast293.8}{5(55)-(15)^2} \\ \\ \text{ b=}20.671 \end{gathered}[/tex]

Substitute -0.297 for m and 20.671 for b in the slope-intercept form:

y = mx + b

Therefore, the equation of the linear regression for this data is:

y = -0.297x + 20.671

ANSWER:

C. y = -0.297x + 20.671

ACCESS MORE