Use the rational zeroes theorem to state all the possible series of the following polynomial:

Given the function:
[tex]f(x)=3x^6+4x^3-2x^2+4[/tex]Let's use the rational zeros theorem to state all the possible zeros of the function.
Every zero of the function will have the form:
[tex]\frac{p}{q}[/tex]Where:
p is a factor of the last term(constant)
q is a factor of the leading coefficient.
Where:
Leading coefficient, q = 3
Factors of 3 = ±1, ±3
Constant term, p = 4
Factors of 4 = ±1, ±2, ±4
[tex]\begin{gathered} \frac{p}{q}=±\frac{1}{1},\pm\frac{1}{3},\operatorname{\pm}\frac{2}{1},\operatorname{\pm}\frac{2}{3},\operatorname{\pm}\frac{4}{1},\operatorname{\pm}\frac{4}{3} \\ \\ Now\text{ simplify:} \\ \frac{p}{q}=\operatorname{\pm}1,\operatorname{\pm}\frac{1}{3},\operatorname{\pm}2,\operatorname{\pm}\frac{2}{3},\operatorname{\pm}4,\operatorname{\pm}\frac{4}{3} \end{gathered}[/tex]Therefore, the possible zeros of the polynomial are:
[tex]\pm1,\operatorname{\pm}\frac{1}{3},\operatorname{\pm}2,\operatorname{\pm}\frac{2}{3},\operatorname{\pm}4,\operatorname{\pm}\frac{4}{3}[/tex]ANSWER:
[tex]\pm1,\operatorname{\pm}\frac{1}{3},\operatorname{\pm}2,\operatorname{\pm}\frac{2}{3},\operatorname{\pm}4,\operatorname{\pm}\frac{4}{3}[/tex]