Respuesta :

A) To know how many times greater 9*10⁵ is from 3*10³, you have to divide both values:

[tex]\frac{9\cdot10^5}{3\cdot10^3}[/tex]

You can divide this fraction into two:

[tex]\frac{9}{3}\cdot\frac{10^5}{10^3}[/tex]

And solve them separatelly, afterwards you can multiply the results of both fractions:

[tex]\frac{9}{3}=3[/tex][tex]\frac{10^5}{10^3}=10^{5-3}=10^2[/tex]

Note: when you divide two exponents values with the same base number, you have to subtract both exponent numbers.

Multiply both results:

[tex]3\cdot10^2=300[/tex]

9*10⁵ is A. 300 times larger as 3*10³

B) To calculate how many times 5*10⁻³ is smaller than 5*10⁻², you have to divide the greater number by the smaller number.

[tex]\frac{5\cdot10^{-2}}{5\cdot10^{-3}}[/tex]

Following the same procedure as before:

[tex]\frac{5}{5}\cdot\frac{10^{-2}}{10^{-3}}[/tex][tex]\frac{5}{5}=1[/tex]

[tex]\frac{10^{-2}}{10^{-3}}=10^{-2-(-3)}=10^{-2+3}=10^1[/tex]

Reunite both values:

[tex]1\cdot10^1=10[/tex]

5*10⁻³ is B. 10 times smaller as 5*10⁻²

ACCESS MORE
EDU ACCESS
Universidad de Mexico