hello
to solve this question, we need to use the formula of compound interest
[tex]\begin{gathered} c\mathrm{}p=p(1+\frac{r}{n})^{nt} \\ c\mathrm{}p=\text{compound interest} \\ p=\text{ principal} \\ r=\text{rate} \\ n=\text{ number of times the interest is compounded} \\ t=\text{time} \end{gathered}[/tex][tex]\begin{gathered} c\mathrm{}p=p(1+\frac{r}{n})^{nt} \\ p=\text{ \$28,600} \\ r=7.9\text{ \% =0.079} \\ t=2 \\ n=2 \end{gathered}[/tex][tex]\begin{gathered} c\mathrm{}p=28600(1+\frac{0.079}{2})^{2\times2} \\ c\mathrm{}p=28600(1+0.0395)^4 \\ c\mathrm{}p=28600\times1.0395^4 \\ c\mathrm{}p=28600\times1.1676 \\ c\mathrm{}p=33393.36 \end{gathered}[/tex]from the calculation above, the money in the account after two years would be $33,393.36