Given
a triangle ABC
Find
Area of a triangle using the laws of sines
Explanation
As area of triangle =
[tex]\frac{1}{2}\times base\times height[/tex]since, it is a right angle triangle.
Assume the sine of angle A
[tex]sinA=\frac{opposite\text{ side}}{hypotenuse}[/tex]so, we have
[tex]sinA=\frac{h}{c}[/tex]hence,
[tex]h=csinA[/tex]now, put the value of h in area of triangle,
[tex]Area\text{ of triangle =}\frac{1}{2}\times b\times csinA=\frac{1}{2}bcsinA[/tex]similarly we can write for the sinB and SinC
[tex]\frac{1}{2}absinC\text{ and }\frac{1}{2}acsinB[/tex]Final Answer
Area of triangle in the law of sines is
[tex]\frac{1}{2}bcsinA[/tex]