Respuesta :

Given

a triangle ABC

Find

Area of a triangle using the laws of sines

Explanation

As area of triangle =

[tex]\frac{1}{2}\times base\times height[/tex]

since, it is a right angle triangle.

Assume the sine of angle A

[tex]sinA=\frac{opposite\text{ side}}{hypotenuse}[/tex]

so, we have

[tex]sinA=\frac{h}{c}[/tex]

hence,

[tex]h=csinA[/tex]

now, put the value of h in area of triangle,

[tex]Area\text{ of triangle =}\frac{1}{2}\times b\times csinA=\frac{1}{2}bcsinA[/tex]

similarly we can write for the sinB and SinC

[tex]\frac{1}{2}absinC\text{ and }\frac{1}{2}acsinB[/tex]

Final Answer

Area of triangle in the law of sines is

[tex]\frac{1}{2}bcsinA[/tex]

Ver imagen HoratioY306278
RELAXING NOICE
Relax