If the slope of a line and a point on the line are known, the equation of the line can be found using the slope-intercept form, y=mx+b. To do so, substitute the value
of the slope and the values of x and y using the coordinates of the given point, then determine the value of b.
Using the above technique, find the equation of the line containing the points (-4,13) and (2,-2)

Respuesta :

ANSWER

[tex]y\text{ = -}\frac{5}{2}x\text{ + 3}[/tex]

STEP-BY-STEP EXPLANATION:

Given the following coordinate points (-4, 13) and (2, -2)

The standard form of the slope-intercept equation is written below

[tex]y\text{ = mx + b}[/tex]

Where

m = slope of the line

b = intercept of the y-axis

The next thing is to find the slope

The formula for slope is given below as

[tex]\begin{gathered} \text{slope = }\frac{rise\text{ }}{\text{run}} \\ \text{rise = y2 - y1} \\ \text{run = x2 - x1} \\ \text{Slope = }\frac{y2\text{ - y1}}{x2\text{ - x1}} \end{gathered}[/tex]

According to the given points, we can deduce the following

x1 = -4

y1 = 13

x2 = 2

y2 = -2

Substitute the following data into the above formula

[tex]\begin{gathered} \text{Slope = }\frac{-2\text{ - 13}}{2\text{ - (-4)}} \\ \text{Slope = }\frac{-15}{2\text{ + 4}} \\ \text{Slope = }\frac{-15}{6} \\ \text{Slope = }\frac{-5}{2} \end{gathered}[/tex]

The slope-intercept form of a given point

[tex]\begin{gathered} (y\text{ - y1) = m(x - x1)} \\ y1\text{ = 13, and x1 = -4} \\ m\text{ = }\frac{-5}{2} \\ (y\text{ - 13) = }\frac{-5}{2}(x\text{ + 4)} \\ y\text{ - 13 = }\frac{-5}{2}\cdot\text{ x -}\frac{5}{2}\cdot\text{ 4} \\ y\text{ - 13 = -}\frac{5}{2}x\text{ - }\frac{20}{2} \\ y\text{ - 13 = -}\frac{5}{2}x\text{ - 10} \\ \text{Add 13 to the both sides} \\ y\text{ - 13 + 13 = -}\frac{5}{2}x\text{ - 10 + 13} \\ y\text{ = -}\frac{5}{2}x\text{ + 3} \end{gathered}[/tex]

Hence, the equation of the coordinate point

[tex]y\text{ = -}\frac{5}{2}x\text{ + 3}[/tex]

ACCESS MORE
EDU ACCESS