Given,
The angle of projection, θ=45°
The maximum horizontal distance the person can jump on earth, R_e=2.85 m
The acceleration due to the gravity of earth, g=9.80 m/s²
The acceleration due to gravity on the moon, g_m=g/6
The acceleration due to gravity on the mars, g_mr=0.38g
The maximum range of a projectile on earth is given by,
[tex]R_e=\frac{u^2}{g}[/tex]Where u is the maximum initial velocity with which the person can jump.
On substituting the known values,
[tex]\begin{gathered} 2.85=\frac{u^2}{9.80} \\ u=\sqrt[]{2.85\times9.80} \\ =5.28\text{ m/s} \end{gathered}[/tex]a)
The maximum range on the moon is given by,
[tex]R_{}m=\frac{u^2}{g_m}[/tex]On substituting the known values,
[tex]\begin{gathered} R_m=\frac{5.28^2}{\frac{9.80}{6}} \\ =17.07\text{ m} \end{gathered}[/tex]Thus the maximum range on the moon would be 17.07 m
b)
The maximum range on the mars is given by,
[tex]\begin{gathered} R_{mr}=\frac{u^2}{g_{mr}} \\ =\frac{u^2}{0.38g} \end{gathered}[/tex]On substituting the known values,
[tex]\begin{gathered} R_{mr}=\frac{5.28^2}{0.38\times9.80} \\ =7.49\text{ m} \end{gathered}[/tex]Thus the maximum range on the mars is 7.49 m