ANSWER :
The answer is :
[tex]y^{\prime}=\frac{3x^2-y\cos x}{\sin x+\sin y}[/tex]EXPLANATION :
From the problem, we have the equation :
[tex]y(\sin x)=x^3+\cos y[/tex]In implicit differentiation, we will differentiate each term :
[tex]\frac{d}{dx}[y(\sin x)]=\frac{d}{dx}(x^3)+\frac{d}{dx}(\cos y)[/tex]Simplify :
[tex]\begin{gathered} \frac{d}{dx}[y(\sin x)]=y(\cos x)+y^{\prime}(\sin x) \\ \\ \frac{d}{dx}(x^3)=3x^2 \\ \\ \frac{d}{dx}(\cos y)=-y^{\prime}\sin y \end{gathered}[/tex]That will be :
[tex]\begin{gathered} \frac{d}{dx}[y(\sin x)]=\frac{d}{dx}(x^3)+\frac{d}{dx}(\cos y) \\ \\ y\cos x+y^{\prime}\sin x=3x^2-y^{\prime}\sin y \end{gathered}[/tex]Express the equation as y' in terms of the other variables.
[tex]\begin{gathered} y\cos x+y^{\prime}\sin x=3x^2-y^{\prime}\sin y \\ y^{\prime}\sin x+y^{\prime}\sin y=3x^2-y\cos x \\ y^{\prime}(\sin x+\sin y)=3x^2-y\cos x \\ \\ y^{\prime}=\frac{3x^2-y\cos x}{\sin x+\sin y} \end{gathered}[/tex]