Let's begin by listing out the information given to us:
[tex](x,y)=(-5,-8)[/tex]This is perpendicular to the line
[tex]y=\frac{5}{4}x+10[/tex]The equation is already in the slope-intercept form:
[tex]\begin{gathered} y=\frac{5}{4}x+10 \\ slope(m)=\frac{5}{4} \end{gathered}[/tex]The slope of the parallel line is given by:
[tex]\begin{gathered} m(perpendicular)=-\frac{1}{m} \\ m=\frac{5}{4} \\ m(perpendicular)=-\frac{1}{\frac{5}{4}}=-\frac{4}{5} \\ m(perpendicular)=-\frac{4}{5}=-0.8 \end{gathered}[/tex]We proceed by substituting the values of x & y into the new equation, we have:
[tex]undefined[/tex]