I need assistance solving this question without solving for x. I need help explaining how to solved by fraction methodological order only.

SOLUTION
Write out the given information
[tex]\begin{gathered} \text{Total gallons of water=4 }\frac{\text{5}}{6} \\ \text{James drank=1 }\frac{\text{1}}{3}\text{gallons} \\ \text{Gilbert drank=}\frac{\text{5}}{6}\text{gallons} \\ \text{Mathew drank=1 }\frac{\text{1}}{2}\text{gallons} \\ \text{Simon drank=}\frac{\text{2}}{3}gallons\text{ } \end{gathered}[/tex]To know the gallons of water left at the end of the day, we add all the gallons of water drank and subtract from the total gallons:
Hence, the sum is
[tex]\begin{gathered} 1\frac{1}{3}+\frac{5}{6}+1\frac{1}{2}+\frac{2}{3} \\ \frac{4}{3}+\frac{5}{6}+\frac{3}{2}+\frac{2}{3} \\ \end{gathered}[/tex]Take the LCM of the denominators, we have
[tex]\begin{gathered} \frac{4}{3}+\frac{5}{6}+\frac{3}{2}+\frac{2}{3} \\ \\ \frac{8+5+9+4}{6}=\frac{26}{6}=\frac{13}{3} \end{gathered}[/tex]Hence the total gallons of water drank is
[tex]\frac{13}{3}=4\frac{1}{3}\text{gallons}[/tex]The amount of gallons left will be
[tex]\begin{gathered} 4\frac{5}{6}-4\frac{1}{3} \\ \text{Hence } \\ \frac{29}{6}-\frac{13}{3} \\ \frac{29-26}{6}=\frac{3}{6}=\frac{1}{2} \end{gathered}[/tex]Therefore
[tex]\frac{1}{2}\text{gallons of water left}[/tex]Answer= 1/2 gallons of water left