Solve for the slope and equation for each of the function B(x), G(x) and T(x)
Solving for B(x)
We have the following points for B(x)
[tex]\begin{gathered} (x_1,y_1)=(0,1) \\ (x_2,y_2)=(5,2) \\ \\ m = \dfrac{y_2 - y_1}{x_2 - x_1} \\ m = \dfrac{2 - 1}{5 - 0} \\ m = \dfrac{1}{5} \end{gathered}[/tex]
Use the point (0,1) to solve for the equation of B(x)
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-1=\frac{1}{5}(x-0) \\ y-1=\frac{1}{5}x \\ y=\frac{1}{5}x+1 \\ B(x)=\frac{1}{5}+1 \end{gathered}[/tex]
Solving for G(x)
[tex]\begin{gathered} (x_1,y_1)=(0,1) \\ (x_2,y_2)=(5,3) \\ \\ m = \dfrac{y_2 - y_1}{x_2 - x_1} \\ m = \dfrac{3 - 1}{5 - 0} \\ m = \dfrac{2}{5} \end{gathered}[/tex]
Use the point (0,1) to solve for the equation G(x)
[tex]\begin{gathered} y-y_1=m\left(x-x_1\right) \\ y - 1 = \dfrac{2}{5}\left(x - 0\right) \\ y-1=\frac{2}{5}x \\ y=\frac{2}{5}x+1 \\ G(x)=\frac{2}{5}x+1 \end{gathered}[/tex]
Solving for T(x)
[tex]\begin{gathered} (x_1,y_1)=(0,2) \\ (x_2,y_2)=(5,5) \\ \\ m = \dfrac{y_2 - y_1}{x_2 - x_1} \\ m = \dfrac{5 - 2}{5 - 0} \\ m = \dfrac{3}{5} \end{gathered}[/tex]
Use the point (0,2) to solve for the equation T(x)
[tex]\begin{gathered} y-y_1=m\left(x-x_1\right) \\ y - 2 = \dfrac{3}{5}\left(x - 0\right) \\ y-2=\frac{3}{5}x \\ y=\frac{3}{5}x+2 \\ T(x)=\frac{3}{5}x+2 \end{gathered}[/tex]
Substituting x = 4 to B(x), G(x), and T(x)
[tex]\begin{gathered} B(x)=\frac{1}{5}x+1 \\ B(4)=\frac{1}{5}(4)+1 \\ B(4)=\frac{4}{5}+1 \\ B(4)=\frac{9}{5} \\ B(4)=1.8 \\ \\ G(x)=\frac{2}{5}x+1 \\ G(4)=\frac{2}{5}(4)+1 \\ G(4)=\frac{8}{5}+1 \\ G(4)=\frac{13}{5} \\ G(4)=2.6 \\ \\ T(x)=\frac{3}{5}x+2 \\ T(4)=\frac{3}{5}(4)+2 \\ T(4)=\frac{12}{5}+2 \\ T(4)=\frac{22}{5} \\ T(4)=4.4 \end{gathered}[/tex]
Therefore, B(4) = 1.8, G(4) = 2.6, and T(4) =4.4