We are asked to find the slopes of the given points and arrange them in increasing order.
Recall that the slope is given by
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]Let us first find the slopes of the given points.
1. (15, 30) and (20, 40)
[tex]m_1=\frac{40-30}{20-15}=\frac{10}{5}=2[/tex]2. (12, 32) and (18, 48)
[tex]m_2=\frac{48-32}{18-12}=\frac{16}{6}=\frac{8}{3}=2.67[/tex]3. (27, 12) and (72, 32)
[tex]m_3=\frac{32-12}{72-27}=\frac{20}{45}=\frac{4}{9}=0.44[/tex]4. (45, 15) and (60, 20)
[tex]m_4=\frac{20-15}{60-45}=\frac{5}{15}=\frac{1}{3}=0.33[/tex]5. (27, 2) and (243, 18)
[tex]m_5=\frac{18-2}{243-27}=\frac{16}{216}=\frac{2}{27}=0.07[/tex]6. (18, 63) and (24. 84)
[tex]m_6=\frac{84-63}{24-18}=\frac{21}{6}=\frac{7}{2}=3.5[/tex]7. (63, 9) and (84, 12)
[tex]m_7=\frac{12-9}{84-63}=\frac{3}{21}=\frac{1}{7}=0.14[/tex]Finally, let us arrange the slopes in increasing order (from least to greatest)
[tex]\begin{gathered} m_5=0.07 \\ m_7=0.14 \\ m_4=0.33 \\ m_3=0.44 \\ m_1=2 \\ m_2=2.67 \\ m_6=3.5 \end{gathered}[/tex]Therefore, the increasing order of the slopes is
m5 = 0.07 (27, 2) and (243, 18)
m7 = 0.14 (63, 9) and (84, 12)
m4 = 0.33 (45, 15) and (60, 20)
m3 = 0.44 (27, 12) and (72, 32)
m1 = 2 (15, 30) and (20, 40)
m2 = 2.67 (12, 32) and (18, 48)
m6 = 3.5 (18, 63) and (24. 84)