We want to figure out if f(x) and g(x) are inverses of each other.
[tex]f(x)=3x\text{ and }g(x)=\frac{x}{3}[/tex]
We have to find f(g(x)) and g(f(x)).
[tex]f(g(x))=3(\frac{x}{3})=x[/tex]
And;
[tex]g(f(x))=\frac{(3x)}{3}=x[/tex]
Now, since ;
[tex]f(g(x))=g(f(x))[/tex]
We can conclude that;
[tex]f(x)\text{ and g(x) are inverses of each other}[/tex]
b.
[tex]f(x)=2x+3\text{ and }g(x)=\frac{x-3}{2}[/tex]
Let us compute f(g(x)) and g(f(x)) to see if these two functions are inverses of each other.
[tex]\begin{gathered} f(g(x))=2(\frac{x-3}{2})+3=x-3+3 \\ f(g(x))=x \end{gathered}[/tex]
And;
[tex]\begin{gathered} g(f(x))=\frac{2x+3-3}{2}=\frac{2x}{2} \\ g(f(x))=x \end{gathered}[/tex]
Now, since ;
[tex]f(g(x))=g(f(x))[/tex]
We can conclude that;
[tex]f(x)\text{ and g(x) are inverses of each other}[/tex]