The current of a river is 4 miles per hour. A boat travels to a point 16 miles upstream and back in 3 hours. What is the speed of the boat in still water?

Respuesta :

Given:

Current of the river = 4 miles per hour

Distance the boat travelled = 16 miles

Time = 3 hours

Let's find the speed of the boat.

Let x represent the speed of the boat.

Thus, we have:

Speed of boat upstream = x - 4

Speed of boat downstream = x + 4

Apply the distance formula:

[tex]\text{Distance = }\frac{speed}{time}[/tex]

Thus, we have:

[tex]\begin{gathered} Time=\frac{speed}{dis\tan ce} \\ \\ \\ 3=\frac{16}{(x+4)}+\frac{16}{(x-4)} \end{gathered}[/tex]

Let's solve for x:

Multiply all terms by (x+4)(x-4)

[tex]\begin{gathered} 3(x+4)(x-4)=\frac{16}{(x+4)}\ast(x+4)(x-4)+\frac{16}{(x-4)}\ast(x+4)(x-4) \\ \\ 3(x+4)(x-4)=16(x-4)+16(x+4) \end{gathered}[/tex]

Solving further:

[tex]\begin{gathered} 3(x(x-4)+4(x-4))=16(x)+16(-4)+16(x)+16(4) \\ \\ 3(x^2-4x+4x-16)=16x-64+16x+64 \\ \\ 3(x^2-16)=16x+16x-64+64 \\ \\ 3x^2-16=32x \end{gathered}[/tex]

Equate to zero:

RELAXING NOICE
Relax