complete the square and write the equation in standard form. then given the center and radius of the circle.

Given the polynomial
[tex]x^2+y^2+12x-16y=-19[/tex]We separate the x and y terms
[tex]\begin{gathered} \lbrack x^2+12x\rbrack+\lbrack y^2-16y\rbrack=-19 \\ \end{gathered}[/tex]We complete the square equation for each part
First part:
[tex]\begin{gathered} \lbrack x^2+6\cdot2x\rbrack+\lbrack y^2-16y\rbrack=-19 \\ \lbrack x^2+6\cdot2x+36\rbrack+\lbrack y^2-16y\rbrack=-19+36 \\ (x+6)^2+\lbrack y^2-16y\rbrack=17 \end{gathered}[/tex]Second part:
[tex]\begin{gathered} (x+6)^2+\lbrack y^2-8\cdot2y\rbrack=17 \\ (x+6)^2+\lbrack y^2-8\cdot2y+64\rbrack=17+64 \\ (x+6)^2+(y-8)^2=81 \\ \end{gathered}[/tex]We translate it to the circle equation form
[tex](x-h)^2+(y-k)^2=r^2[/tex]where (h, k) is the center of the circle and r is the radius
Then, in this case
[tex]\begin{gathered} (x+6)^2+(y-8)^2=81 \\ (x+6)^2+(y-8)^2=9^2 \end{gathered}[/tex]Then it's center is given by ( -6, 8 ) and it's radius is 9